Universal Caching

Ativ Joshi and Abhishek Sinha

Tata Institute of Fundamental Research, Mumbai, India

ITW 2022

1/24

Introduction

[|
‘[::::1' 1 ‘ 2 ‘ ‘ C| =
2. User requests 1. Cache prefetches =
User 2 file Cache C files from the Server
Server

Contains N files

Figure: Setup of the caching problem

2/24

Introduction

» There are N files, out of which C files needs to be prefetched into
the cache.

> At each timestep t, an online caching policy m pre-fetches a set of
C files, denoted by the vector y; € {0,1}", where ||y:||1 = C.

P> At the same time, the user requests a file, denoted by the vector
x: € {0,1}V such that ||x¢|[1 = 1. The reward at round t can be
expressed as (X, ¥t).

3/24

Finite-State Regret

» Our objective is to design an algorithm that is competitive against a
dynamic benchmark. Formally, we want to minimize the FS-Regret
defined below

where G is the set of all FSPs.

4/24

FSP & FSM

Definition 1 (Finite State Prefetcher (FSP))

An FSP is described by a quintuple (S, [N], g, f,so), where
> S is a finite set of states
» [N] is the set of alphabets corresponding to N files
» g:S x [N] — S is a state transition function
» f:S — [N]€ is a possibly randomized prefetching strategy
P> sp is the initial state

The components of an FSP without the prefetcher f form a Finite
State Machine (FSM).

5/24

Example

1,3
52

(a) State transition function g(s, x) of FSP.

Symbol (x)

112|3|4]|5
“©wls|[0]4]0]0]1
wls|[1]012]1]0
s s|0f0]0[1]2
n

(b) Frequency Nt (s, x).

Figure: Offline optimal policy for a given 3-state FSP for the 5-ary input

f*(s)
S0 {2,5}
51 {1,3}
S2 {4,5}

(c) Optimal prediction function f*(s)

sequence of length T = 12 given by (2,1,5,2,3,5,2,4,5,2,3,4) and

c=2

6/24

Why FSPs?

» FSP can easily capture the repetitive patterns in the input requests.

> Widely deployed policies with a finite competitive ratio, such as LRU
and FIFO belong to the class of Finite State Prefetchers.

b

C

f

Figure: LRU as an FSP

7/24

Offline Performance Characterization

Definition 2 (k*"-order Markov Prefetcher)

A k™ order Markov Prefetcher is a special class of FSP with Nk
states, where the state at round t is given by the k-tuple of the
previous k file requests, i.e., st = (Xt—1,Xt—2, -« -, X¢—k)-

Let #5(x) and fik(x]) denote the offline fractional hitrates of an
S-state FSP and order-k Markov Prefetcher for a given sequence

T

8/24

Theorem 1 (MP vs FSP)

The hit rate of a Markov prefetcher of a sufficiently large order
exceeds the hit rate of any FSP (up to a vanishingly small term). In
particular, for any file request sequence x”, we have:

7s(xT) — fik(xT) < min <1 — C/N, /2(1'(”51)> (2)

9/24

Online Caching Policy for a Single State: HEDGE

Experts

Learner

> At each round t, experts make prediction. The learner chooses an
expert k with probability p; . The adversary gives a reward r;; to
every expert. Expected reward of the learner is (p;, rt).

» Hedge samples an expert i with probability p; ; o< exp(n Zi;ﬁ rei)-

» A naive approach would be to run HEDGE on M = ('g)

meta-experts. Obviously, this is computationally intractable.

10/24

The SAGE Framework (Mukhopadhyay et al. [1])

> The SAGE algorithm gives an efficient implementation of the
HEDGE policy using randomized sampling and exploiting the
linearity of the reward function.

P In the online caching problem, the reward depends only on the
marginal inclusion probabilities of each file. Formally, SAGE works
as follows:

» Efficiently computes the marginal file inclusion probabilities induced
by HEDGE.

> Efficiently sample a subset of C files without replacement consistent
with these marginals.

11/24

SAGE: Computing the Marginals

» The marginal inclusion probability for the it" file is given by:

we-1(1) 2 scinp{iy:isi=c—1 We-1(5)
2oscingst=c We-1(S')

pe(i) = : (3)
where w¢(S) = Micswe(i), we(i) = exp(nR:(i)) and R:(i) is the
total number of times file i was requested up to time t.

» Both the numerator and denominator can be expressed in terms of
certain elementary symmetric polynomials (ESP), which can be
efficiently evaluated in O(N) time using FFT-based polynomial
multiplication methods.

12/24

SAGE: Madow's Sampling

> We want to sample C out of N files such that each file is sampled
with probability p;. Given that vazl pi = C, the files can be
sampled using the following procedure :

N a R b

Let Pp =0 and P; = Pi_1 + p;, Vi € [N]
Sample a uniform random variable U € [0, 1].
S«
for i< 0to C—1do
Select element j if Py < U+ i< P;
S+ Su{j}
end for
return S

13/24

SAGE: Madow's Sampling

P, P, Py P, Ps Ps P;

S It A R B

V) U+1 U+2 U+3

Figure: Example of Madow's Sampling. Out of 8 items, the 4 which will
be selected are {2,5,6,8}.

14/24

SAGE: Regret Bound

» The SAGE algorithm gives a "small-loss” bound on the static regret:

T(— ﬂ_HEDGE) < \/W—i— CiIn(Ne/C), (4)

where /% = T — T#1(xT) is the cumulative number of cache misses
incurred by the optimal offline caching configuration in hindsight.

15/24

SAGE with FSM

» Consider any given S-state FSM. Let x; be the sequence of file
requests corresponding to the state s.

» Upon running a separate copy of the SAGE policy for each state of
the given FSM with the request sequence xs,s € S, we obtain the
following regret bound:

T(7s(xT) — meAcE(x \/2c5L n(Ne/C) + CSIn(Ne/C)
(5)

S x
where LT s =30, I .

16/24

Theorem 2

For any file request sequence x T, the regret of the k™ order
Markovian FSM running the SAGE caching policy on each state,
compared to an optimal offline FSP containing at most S many
states is upper-bounded as:

T(Fs(xT) = 7" (xT)) < Tmin(1 = C/N,VA) + | 2BL , + B

where A = 15 and B = N*ClIn i

17/24

Example

» Furthermore, for a request sequence XCZ)— generated by any FSM
containing at most @ states, the expected number of cache misses
conceded by the SAGE policy with a k™" order Markovian FSM can

be upper bounded by

<A++V2AB+ B

where A= (1§, /529%) and B = M€ 1n e,

18/24

Universal Caching Policy

» |n Theorem 2, we are free to choose the order k of the Markovian
prefetcher.

» Since the number of states S in the benchmark comparator could be
arbitrarily large, to get asymptotically zero regret, we need to
increase the order of the Markovian FSM with time.

» For this, we use an N-ary version of the LZ parsing tree and run
SAGE on each of it's node.

19/24

Lempel-Ziv Tree

» The LZ parsing algorithm parses the N-ary request sequence into
distinct phrases such that each phrase is the shortest phrase that is
not previously parsed.

» The parsing proceeds as follows:

» The LZ tree is initialized with a root node and N leaves.

P> The current tree is used to create the next phrase by following the
path from the root to leaf according to the consecutive file requests.

» Once a leaf node is reached, the tree is extended by making the leaf

an internal node by adding N offsprings to the tree. Then we move
back to the root of the tree.

20/24

Example

€ € €
P 00 002 0012
B N e
01 2 0 1 2 0 1 2 0 1 2
1 1 1 0
0 1 2 0 1 2 0 1 2 0 1 2

Figure: Evolution of LZ tree for N = 3 and input page request sequence

001220. The parsed phrases are {0,01,2,20}. Each instance denotes the
tree after parsing a phrase. The states are shown in blue. The requests at
each state is shown in black, and the latest parsed phrase is shown in red.

21/24

Properties of LZ Tree

» The number of nodes in an N-ary LZ tree grows sub-linearly with T

as c(T) = O(To&r).

» For any fixed k, the fraction of file requests made on a node with
depth less than k vanishes asymptotically.

» Hence, the expected fraction of cache hits 7% achieved by the LZ
prefetcher is asymptotically lower bounded by that of a k" order
Markovian FSP containing N ~ ¢(T) states up to a sublinear
regret term.

22/24

Theorem 3

For any integer k > 0, the regret of the LZ prefetcher w.r.t. an
offline k™ order Markovian prefetcher can be upper-bounded as:

Ry = T(ji — %) < 3(c(T), L) + ke(T),
where ¢(T) = O(Tlc:;gTN) and

5(B, 1) = \/2BCL;Z In(Ne/C) + CB In(Ne/C).

23/24

References

[1]

[2]

8]

[4]

Samrat Mukhopadhyay, Sourav Sahoo, and Abhishek Sinha.
k-experts—online policies and fundamental limits. In

International Conference on Artificial Intelligence and Statistics.

PMLR, 2022.

Meir Feder, Neri Merhav, and Michael Gutman. Universal
prediction of individual sequences. IEEE transactions on
Information Theory, 38(4):1258-1270, 1992.

Samrat Mukhopadhyay, Sourav Sahoo, and Abhishek Sinha.
k-experts - online policies and fundamental limits. CoRR,
abs/2110.07881, 2021. URL
https://arxiv.org/abs/2110.07881.

Rajarshi Bhattacharjee, Subhankar Banerjee, and Abhishek
Sinha. Fundamental limits on the regret of online
network-caching. Proc. ACM Meas. Anal. Comput. Syst., 4(2),
June 2020. doi:10.1145/3392143. URL
https://doi.org/10.1145/3392143.

24/24

https://arxiv.org/abs/2110.07881
https://doi.org/10.1145/3392143
https://doi.org/10.1145/3392143

	References

