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Introduction
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Figure: Setup of the caching problem
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Introduction

» There are N files, out of which C files needs to be prefetched into
the cache.

> At each timestep t, an online caching policy m pre-fetches a set of
C files, denoted by the vector y; € {0,1}", where ||y:||1 = C.

P> At the same time, the user requests a file, denoted by the vector
x: € {0,1}V such that ||x¢|[1 = 1. The reward at round t can be
expressed as (X, ¥t).

3/24



Finite-State Regret

» Our objective is to design an algorithm that is competitive against a
dynamic benchmark. Formally, we want to minimize the FS-Regret
defined below

where G is the set of all FSPs.
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FSP & FSM

Definition 1 (Finite State Prefetcher (FSP))

An FSP is described by a quintuple (S, [N], g, f,so), where
> S is a finite set of states
» [N] is the set of alphabets corresponding to N files
» g:S x [N] — S is a state transition function
» f:S — [N]€ is a possibly randomized prefetching strategy
P> sp is the initial state

The components of an FSP without the prefetcher f form a Finite
State Machine (FSM).
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Example
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(a) State transition function g(s, x) of FSP.
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(b) Frequency Nt (s, x).

Figure: Offline optimal policy for a given 3-state FSP for the 5-ary input

f*(s)
S0 {2,5}
51 {1,3}
S2 {4,5}

(c) Optimal prediction function f*(s)

sequence of length T = 12 given by (2,1,5,2,3,5,2,4,5,2,3,4) and

c=2
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Why FSPs?

» FSP can easily capture the repetitive patterns in the input requests.

> Widely deployed policies with a finite competitive ratio, such as LRU
and FIFO belong to the class of Finite State Prefetchers.
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Figure: LRU as an FSP
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Offline Performance Characterization

Definition 2 (k*"-order Markov Prefetcher)

A k™ order Markov Prefetcher is a special class of FSP with Nk
states, where the state at round t is given by the k-tuple of the
previous k file requests, i.e., st = (Xt—1,Xt—2, -« -, X¢—k)-

Let #5(x ) and fik(x] ) denote the offline fractional hitrates of an
S-state FSP and order-k Markov Prefetcher for a given sequence

T
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Theorem 1 (MP vs FSP)

The hit rate of a Markov prefetcher of a sufficiently large order
exceeds the hit rate of any FSP (up to a vanishingly small term). In
particular, for any file request sequence x”, we have:

7s(xT) — fik(xT) < min <1 — C/N, /2(1'(”51)> (2)
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Online Caching Policy for a Single State: HEDGE

Experts

Learner

> At each round t, experts make prediction. The learner chooses an
expert k with probability p; . The adversary gives a reward r;; to
every expert. Expected reward of the learner is (p;, rt).

» Hedge samples an expert i with probability p; ; o< exp(n Zi;ﬁ rei)-

» A naive approach would be to run HEDGE on M = ('g)

meta-experts. Obviously, this is computationally intractable.
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The SAGE Framework (Mukhopadhyay et al. [1])

> The SAGE algorithm gives an efficient implementation of the
HEDGE policy using randomized sampling and exploiting the
linearity of the reward function.

P In the online caching problem, the reward depends only on the
marginal inclusion probabilities of each file. Formally, SAGE works
as follows:

» Efficiently computes the marginal file inclusion probabilities induced
by HEDGE.

> Efficiently sample a subset of C files without replacement consistent
with these marginals.
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SAGE: Computing the Marginals

» The marginal inclusion probability for the it" file is given by:

we-1(1) 2 scinp{iy:isi=c—1 We-1(5)
2oscingst=c We-1(S')

pe(i) = : (3)
where w¢(S) = Micswe(i), we(i) = exp(nR:(i)) and R:(i) is the
total number of times file i was requested up to time t.

» Both the numerator and denominator can be expressed in terms of
certain elementary symmetric polynomials (ESP), which can be
efficiently evaluated in O(N) time using FFT-based polynomial
multiplication methods.
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SAGE: Madow's Sampling

> We want to sample C out of N files such that each file is sampled
with probability p;. Given that vazl pi = C, the files can be
sampled using the following procedure :

N a R b

Let Pp =0 and P; = Pi_1 + p;, Vi € [N]
Sample a uniform random variable U € [0, 1].
S«
for i< 0to C—1do
Select element j if Py < U+ i< P;
S+ Su{j}
end for
return S
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SAGE: Madow's Sampling

P, P, Py P, Ps  Ps P;

S It A R B

V) U+1 U+2 U+3

Figure: Example of Madow's Sampling. Out of 8 items, the 4 which will
be selected are {2,5,6,8}.
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SAGE: Regret Bound

» The SAGE algorithm gives a "small-loss” bound on the static regret:

T( — ﬂ_HEDGE) < \/W—i— CiIn(Ne/C), (4)

where /% = T — T#1(xT) is the cumulative number of cache misses
incurred by the optimal offline caching configuration in hindsight.
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SAGE with FSM

» Consider any given S-state FSM. Let x; be the sequence of file
requests corresponding to the state s.

» Upon running a separate copy of the SAGE policy for each state of
the given FSM with the request sequence xs,s € S, we obtain the
following regret bound:

T(7s(xT) — meAcE(x \/2c5L n(Ne/C) + CSIn(Ne/C)
(5)

S x
where LT s =30, I .
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Theorem 2

For any file request sequence x T, the regret of the k™ order
Markovian FSM running the SAGE caching policy on each state,
compared to an optimal offline FSP containing at most S many
states is upper-bounded as:

T(Fs(xT) = 7" (xT)) < Tmin(1 = C/N,VA) + | 2BL , + B

where A = 15 and B = N*ClIn i
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Example

» Furthermore, for a request sequence XCZ)— generated by any FSM
containing at most @ states, the expected number of cache misses
conceded by the SAGE policy with a k™" order Markovian FSM can

be upper bounded by

<A++V2AB+ B

where A= (1§, /529%) and B = M€ 1n e,
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Universal Caching Policy

» |n Theorem 2, we are free to choose the order k of the Markovian
prefetcher.

» Since the number of states S in the benchmark comparator could be
arbitrarily large, to get asymptotically zero regret, we need to
increase the order of the Markovian FSM with time.

» For this, we use an N-ary version of the LZ parsing tree and run
SAGE on each of it's node.
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Lempel-Ziv Tree

» The LZ parsing algorithm parses the N-ary request sequence into
distinct phrases such that each phrase is the shortest phrase that is
not previously parsed.

» The parsing proceeds as follows:

» The LZ tree is initialized with a root node and N leaves.

P> The current tree is used to create the next phrase by following the
path from the root to leaf according to the consecutive file requests.

» Once a leaf node is reached, the tree is extended by making the leaf

an internal node by adding N offsprings to the tree. Then we move
back to the root of the tree.
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Example

€ € €
P 00 002 0012
B N e
01 2 0 1 2 0 1 2 0 1 2
1 1 1 0
0 1 2 0 1 2 0 1 2 0 1 2

Figure: Evolution of LZ tree for N = 3 and input page request sequence

001220. The parsed phrases are {0,01,2,20}. Each instance denotes the
tree after parsing a phrase. The states are shown in blue. The requests at
each state is shown in black, and the latest parsed phrase is shown in red.

21/24



Properties of LZ Tree

» The number of nodes in an N-ary LZ tree grows sub-linearly with T

as c(T) = O(To&r).

» For any fixed k, the fraction of file requests made on a node with
depth less than k vanishes asymptotically.

» Hence, the expected fraction of cache hits 7% achieved by the LZ
prefetcher is asymptotically lower bounded by that of a k" order
Markovian FSP containing N ~ ¢(T) states up to a sublinear
regret term.

22/24



Theorem 3

For any integer k > 0, the regret of the LZ prefetcher w.r.t. an
offline k™ order Markovian prefetcher can be upper-bounded as:

Ry = T(ji — %) < 3(c(T), L) + ke(T),
where ¢(T) = O(Tlc:;gTN) and

5(B, 1) = \/2BCL;Z In(Ne/C) + CB In(Ne/C).
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