
1/24

Universal Caching

Ativ Joshi and Abhishek Sinha

Tata Institute of Fundamental Research, Mumbai, India

ITW 2022

2/24

Introduction

User

1 2 C

Cache Server

Contains N files

2. User requests

a file

1. Cache prefetches

C files from the

Server

Figure: Setup of the caching problem

3/24

Introduction

▶ There are N files, out of which C files needs to be prefetched into
the cache.

▶ At each timestep t, an online caching policy π pre-fetches a set of
C files, denoted by the vector yt ∈ {0, 1}N , where ||yt ||1 = C .

▶ At the same time, the user requests a file, denoted by the vector
xt ∈ {0, 1}N , such that ||xt ||1 = 1. The reward at round t can be
expressed as ⟨xt , yt⟩.

4/24

Finite-State Regret

▶ Our objective is to design an algorithm that is competitive against a
dynamic benchmark. Formally, we want to minimize the FS-Regret
defined below

Rπ
T = max

π̂∈G

T∑
t=1

⟨xt , ŷt(π̂)⟩ −
T∑
t=1

⟨xt , yt(π)⟩. (1)

where G is the set of all FSPs.

5/24

FSP & FSM

Definition 1 (Finite State Prefetcher (FSP))

An FSP is described by a quintuple (S, [N], g , f , s0), where

▶ S is a finite set of states

▶ [N] is the set of alphabets corresponding to N files

▶ g : S × [N]→ S is a state transition function

▶ f : S → [N]C is a possibly randomized prefetching strategy

▶ s0 is the initial state

The components of an FSP without the prefetcher f form a Finite
State Machine (FSM).

6/24

Example

s0 s1 s2
2 1,3

*

∗\{2} 2,4,5

(a) State transition function g(s, x) of FSP.

Symbol (x)

1 2 3 4 5

S
ta
te
s
(s
) s0 0 4 0 0 1

s1 1 0 2 1 0
s2 0 0 0 1 2

(b) Frequency NT (s, x).

f ∗(s)

s0 {2,5}
s1 {1,3}
s2 {4,5}

(c) Optimal prediction function f ∗(s)

Figure: Offline optimal policy for a given 3-state FSP for the 5-ary input
sequence of length T = 12 given by (2, 1, 5, 2, 3, 5, 2, 4, 5, 2, 3, 4) and
C = 2.

7/24

Why FSPs?

▶ FSP can easily capture the repetitive patterns in the input requests.

▶ Widely deployed policies with a finite competitive ratio, such as LRU
and FIFO belong to the class of Finite State Prefetchers.

.
a c d

b c

b

d a

b c d f

a

f
Figure: LRU as an FSP

8/24

Offline Performance Characterization

Definition 2 (k th-order Markov Prefetcher)

A kth order Markov Prefetcher is a special class of FSP with Nk

states, where the state at round t is given by the k-tuple of the
previous k file requests, i.e., st = (xt−1, xt−2, . . . , xt−k).

Let π̃S(x
T
1) and µ̃k(x

T
1) denote the offline fractional hitrates of an

S-state FSP and order-k Markov Prefetcher for a given sequence
xT1 .

9/24

Theorem 1 (MP vs FSP)

The hit rate of a Markov prefetcher of a sufficiently large order
exceeds the hit rate of any FSP (up to a vanishingly small term). In
particular, for any file request sequence xT , we have:

π̃S(x
T)− µ̃k(x

T) ≤ min

(
1− C/N,

√
lnS

2(k + 1)

)
. (2)

10/24

Online Caching Policy for a Single State: Hedge

1

Experts

Learner

2
. . . .

M

▶ At each round t, experts make prediction. The learner chooses an
expert k with probability pt,k . The adversary gives a reward rt,i to
every expert. Expected reward of the learner is ⟨pt , rt⟩.

▶ Hedge samples an expert i with probability pt,i ∝ exp(η
∑t−1

τ=1 rt,i).

▶ A naive approach would be to run Hedge on M =
(N
C

)
meta-experts. Obviously, this is computationally intractable.

11/24

The Sage Framework (Mukhopadhyay et al. [1])

▶ The Sage algorithm gives an efficient implementation of the
Hedge policy using randomized sampling and exploiting the
linearity of the reward function.

▶ In the online caching problem, the reward depends only on the
marginal inclusion probabilities of each file. Formally, Sage works
as follows:

▶ Efficiently computes the marginal file inclusion probabilities induced
by Hedge.

▶ Efficiently sample a subset of C files without replacement consistent
with these marginals.

12/24

Sage: Computing the Marginals

▶ The marginal inclusion probability for the i th file is given by:

pt(i) =
wt−1(i)

∑
S⊆[N]\{i}:|S|=C−1 wt−1(S)∑

S ′⊆[N]:|S ′|=C wt−1 (S ′)
, (3)

where wt(S) = Πi∈Swt(i), wt(i) ≡ exp(ηRt(i)) and Rt(i) is the
total number of times file i was requested up to time t.

▶ Both the numerator and denominator can be expressed in terms of
certain elementary symmetric polynomials (ESP), which can be
efficiently evaluated in Õ(N) time using FFT-based polynomial
multiplication methods.

13/24

Sage: Madow’s Sampling

▶ We want to sample C out of N files such that each file is sampled
with probability pi . Given that

∑N
i=1 pi = C , the files can be

sampled using the following procedure :

1: Let P0 = 0 and Pi = Pi−1 + pi , ∀i ∈ [N]
2: Sample a uniform random variable U ∈ [0, 1].
3: S ← ∅
4: for i ← 0 to C − 1 do
5: Select element j if Pj−1 ≤ U + i ≤ Pj

6: S ← S ∪ {j}
7: end for
8: return S

14/24

Sage: Madow’s Sampling

P1 P2 P3 P4 P5 P6 P7 P8

1 2 3 4

U U + 1 U + 2 U + 3

0

Figure: Example of Madow’s Sampling. Out of 8 items, the 4 which will
be selected are {2, 5, 6, 8}.

15/24

Sage: Regret Bound

▶ The Sage algorithm gives a ”small-loss” bound on the static regret:

T (π̃1 − πHedge) ≤
√

2Cl∗T ln(Ne/C) + C ln(Ne/C), (4)

where l∗T ≡ T − T π̃1(x
T) is the cumulative number of cache misses

incurred by the optimal offline caching configuration in hindsight.

16/24

Sage with FSM

▶ Consider any given S-state FSM. Let xs be the sequence of file
requests corresponding to the state s.

▶ Upon running a separate copy of the Sage policy for each state of
the given FSM with the request sequence xs , s ∈ S, we obtain the
following regret bound:

T (π̃S(x
T)− πSage

S (xT)) ≤
√
2CSL∗T ,S ln(Ne/C) + CS ln(Ne/C)

(5)
where L∗T ,S ≡

∑S
s=1 l

∗
T ,s .

17/24

Theorem 2

For any file request sequence xT , the regret of the kth order
Markovian FSM running the Sage caching policy on each state,
compared to an optimal offline FSP containing at most S many
states is upper-bounded as:

T (π̃S(x
T)− πSage

k (xT)) ≤ T min(1− C/N,
√
A) +

√
2BL∗T ,k + B

where A = lnS
2(k+1) and B = NkC ln Ne

C

18/24

Example

▶ Furthermore, for a request sequence xT
Q generated by any FSM

containing at most Q states, the expected number of cache misses
conceded by the Sage policy with a kth order Markovian FSM can
be upper bounded by

≤ A+
√
2AB + B

where A =
(
1− C

N ,
√

lnQ
2(k+1)

)
and B = NkC

T ln Ne
C .

19/24

Universal Caching Policy

▶ In Theorem 2, we are free to choose the order k of the Markovian
prefetcher.

▶ Since the number of states S in the benchmark comparator could be
arbitrarily large, to get asymptotically zero regret, we need to
increase the order of the Markovian FSM with time.

▶ For this, we use an N-ary version of the LZ parsing tree and run
Sage on each of it’s node.

20/24

Lempel-Ziv Tree

▶ The LZ parsing algorithm parses the N-ary request sequence into
distinct phrases such that each phrase is the shortest phrase that is
not previously parsed.

▶ The parsing proceeds as follows:

▶ The LZ tree is initialized with a root node and N leaves.

▶ The current tree is used to create the next phrase by following the
path from the root to leaf according to the consecutive file requests.

▶ Once a leaf node is reached, the tree is extended by making the leaf
an internal node by adding N offsprings to the tree. Then we move
back to the root of the tree.

21/24

Example

ϵ
0

210

ϵ
00

210
1

210

ϵ
002

210
1

210

ϵ
0012

2
0

210

10
1

210

Figure: Evolution of LZ tree for N = 3 and input page request sequence
001220. The parsed phrases are {0, 01, 2, 20}. Each instance denotes the
tree after parsing a phrase. The states are shown in blue. The requests at
each state is shown in black, and the latest parsed phrase is shown in red.

22/24

Properties of LZ Tree

▶ The number of nodes in an N-ary LZ tree grows sub-linearly with T
as c(T) = O(T logN

logT).

▶ For any fixed k , the fraction of file requests made on a node with
depth less than k vanishes asymptotically.

▶ Hence, the expected fraction of cache hits πLZ achieved by the LZ
prefetcher is asymptotically lower bounded by that of a kth order
Markovian FSP containing Nk ≈ c(T) states up to a sublinear
regret term.

23/24

Theorem 3

For any integer k ≥ 0, the regret of the LZ prefetcher w.r.t. an
offline kth order Markovian prefetcher can be upper-bounded as:

RT ≡ T (µ̃k − πLZ) ≤ δ(c(T), L∗,LZT) + kc(T),

where c(T) ≡ O(T logN
logT) and

δ(B, l∗T) ≡
√
2BCL∗,LZT ln(Ne/C) + CB ln(Ne/C).

24/24

References

[1] Samrat Mukhopadhyay, Sourav Sahoo, and Abhishek Sinha.
k-experts–online policies and fundamental limits. In
International Conference on Artificial Intelligence and Statistics.
PMLR, 2022.

[2] Meir Feder, Neri Merhav, and Michael Gutman. Universal
prediction of individual sequences. IEEE transactions on
Information Theory, 38(4):1258–1270, 1992.

[3] Samrat Mukhopadhyay, Sourav Sahoo, and Abhishek Sinha.
k-experts - online policies and fundamental limits. CoRR,
abs/2110.07881, 2021. URL
https://arxiv.org/abs/2110.07881.

[4] Rajarshi Bhattacharjee, Subhankar Banerjee, and Abhishek
Sinha. Fundamental limits on the regret of online
network-caching. Proc. ACM Meas. Anal. Comput. Syst., 4(2),
June 2020. doi:10.1145/3392143. URL
https://doi.org/10.1145/3392143.

https://arxiv.org/abs/2110.07881
https://doi.org/10.1145/3392143
https://doi.org/10.1145/3392143

	References

